

DRAINAGE REPORT

Sources for Community Independent Living

Apple Blossom Lane Little Rock, Pulaski County, Arkansas

May 4, 2025

Prepared for:

Prepared By:

Wholee Associates, Inc. 1836 Tusk Parkway, Suite 500, Little Rock, Arkansas, 72211 (Tel) 501 123 4567 (Fax) 501 765 4321 engineer@email.com Drainage Report Sources for Community Independent Living, Apple Blossom Lane Little Rock, Pulaski County, Arkansas Page 1 of 6

DRAINAGE REPORT LIST OF EXHIBITS AND APPENDICES

EXHIBIT I	Location Map
EXHIBIT II	FEMA FIRMette
EXHIBIT III	Hydrologic Data
EXHIBIT IV	Pre-Developed Drainage Map
EXHIBIT V	Post-Developed Drainage Map
EXHIBIT VI	Site Drainage Map
APPENDIX A	USGA Soil Report
APPENDIX B	Hydrologic Calculations
APPENDIX C	Detention System Details
APPENDIX D	Hydraulic Calculations
APPENDIX E	Maintenance Agreement

Drainage Report Sources for Community Independent Living, Apple Blossom Lane Little Rock, Pulaski County, Arkansas Page 2 of 6

Drainage Report for Sources for Community Independent Living Apple Blossom Lane Little Rock, Pulaski County, Arkansas

A. GENERAL

An approximately 13,390 sq ft. 2 story Independent Living Facility is being proposed on the west side of Apple Blossom Lane in Little Rock, Arkansas as shown in Exhibit I. The project also includes new asphalt parking lots and driveways, associated heavy duty concrete driving lanes, associated sidewalk and landscaping, new storm drains and inlets, an underground detention system, as well as other site improvements.

The project area is located outside the FEMA designated floodplain, as shown in Exhibit II.

The targeted primary pollutant for the site is heavy metals and total suspended solids (TSS). Water quality treatment will be provided through bioretention in a parking lot island and additional treatment will be provided in the underground detention system.

Peak stormwater runoff for the collection and conveyance system were calculated, in accordance with the City of Little Rock Drainage Manual using the Rational Method. Detention calculations were performed using the SCS Method. Rainfall intensities and depths were obtained from the Little Rock drainage manual and this hydrological information can be found in Exhibit III.

Hydrologic calculations were conducted using Hydraflow Hydrographs software. Pre- and postdevelopment peak flows were calculated for the 2, 5, 10, 25, and 100-year events. Hydraulic and inlet calculations were done using StormCAD and the systems were evaluated for the 25-year and 100-year storm events. A downstream assessment was performed to determine potential downstream impacts.

B. PRE-DEVELOPED CONDITIONS

As shown on the predeveloped drainage area map, Exhibit IV, the proposed location of development is primarily grass covered with an area of tree cover and brush located on the west side of the site. Additionally, the site drops nearly 30 feet in elevation from the west side of the site to the east where Apple Blossom Lane is located. A majority of the site (approximately 1.79 acres) drains to an existing curb inlet located on Apple Blossom Lane. This curb inlet has been designated as Study Point "A" for the purposes of drainage analysis. The other portion of the site (approximately 0.83 acres) drains to an existing curb inlet just south of the southeast corner of the project site. This inlet has been designated Study Point "B" for the purpose of drainage analysis.

A USGS soils report of the site can be found in Appendix A.

Drainage Report Sources for Community Independent Living, Apple Blossom Lane Little Rock, Pulaski County, Arkansas Page 3 of 6

The following runoff coefficients were used to calculate composite coefficients for each catchment:

Table 1: Runoff Coefficients

.

Surface	Runoff Coefficient
Grass (Average)	69
Pavement/Roof	98

The calculation results for the peak pre-developed flows at the Study Point are contained in Appendix B and summarized in the following table:

	Pre-Developed Flow	Q ₂ (cfs)	Q₅ (cfs)	Q ₁₀ (cfs)	Q ₂₅ (cfs)	Q ₁₀₀ (cfs)
	Study Point A	3.7	5.6	7.2	9.9	14.6
٠	Study Point B	2.1	3.0	3.9	5.1	7.3

Table 2. Pre-developed Peak Flow Summary at the Study Points

C. POST-DEVELOPED CONDITIONS

Stormwater Hydrology

As shown on the Post-Development Drainage Area Map, Exhibit V, most of the site is directed to onsite collection systems that discharges into a proposed underground ground detention system, then to Study Point "A". The remaining runoff will be directed to a proposed storm drain that ties into the existing system on the private drive, thence to Study Point "B". Results of the post-developed hydrologic calculations are included in Appendix B.

Stormwater Quantity

Section 2.1.2 (Downstream Flood Protection) of the Little Rock stormwater drainage manual requires that new developments not increase the peak flow as compared to pre-development conditions. In order to meet this requirement, an underground detention system will be provided. The system will be the Advanced Drainage Systems, Inc. (ADS) Stormtech Chamber. As shown by the technical information in Appendix C, the detention system has a maximum storage volume of 16,380 cubic feet. This exceeds the storage required for the 100-year storm event of 16,277 cubic feet. A 10" orifice in the outlet structure will control the discharge rate from the detention system. The detention system performance results using the modified rational method are included in Appendix B and summarized in Tables 3, 4, and 5 below.

Drainage Report Sources for Community Independent Living, Apple Blossom Lane Little Rock, Pulaski County, Arkansas Page 4 of 6

Table 3: Pond Performance Summary

Underground Storage Pond	2-Year	5-Year	10-Year	25-Year	100-Year
Maximum Water Elevation	1,230.34	1,230.67	1,230.97	1,231.24	1,231.70
Maximum Storage (cubic feet)	4,339	6,362	8,237	11,121	16,277
Peak Inflow (cfs)	6.8	8.9	10.8	13.6	18.1
Peak Discharge (cfs)	2.2	2.5	2.6	2.8	3.0
Difference (cfs)	-4.6	-6.4	-8.2	-10.8	-15.1

Table 4: Pre-developed vs Post-developed Peak Flow Summary at Study Point "A"

Outfall	Q ₂ (cfs)	Q₅ (cfs)	Q ₁₀ (cfs)	Q ₂₅ (cfs)	Q ₁₀₀ (cfs)
Pre-Developed	3.7	5.6	7.2	9.9	14.6
Post-Developed	2.7	3.1	3.5	4.1	5.0
Difference (cfs)	-1.0	-2.5	-3.7	-5.8	-9.6

Outfall	Q ₂ (cfs)	Q₅ (cfs)	Q ₁₀ (cfs)	Q ₂₅ (cfs)	Q ₁₀₀ (cfs)
Pre-Developed	2.1	3.0	3.9	5.1	7.3
Post-Developed	2.1	2.9	3.6	4.8	6.7
Difference (cfs)	0.0	-0.1	-0.3	-0.3	-0.6

As shown in Table 4 and 5, the post-development peak flows are equal to or lower than their pre-development counterparts for all storm events at study point "A" and study point "B", respectively.

D. Water Quality

The ADS System also meets the requirements of Section 2.1.1 (Water Quality) of the Little Rock stormwater drainage manual via the TSS Reduction Method. According to the City of Little Rock Drainage Criteria Manual, the stormwater system shall be designed to be capable of removing at least 80% of TSS from an equivalent onsite impervious area. The detention volume of the ADS Stormtech system is sufficient in holding the Water Quality Volume equal to the first 1.5 inches of rainfall. The total site area is 2.0 acres; the R_v value was determined using 55% impervious cover of the catchment area.

 $R_v = 0.05 + 0.009(I)$ $R_v = 0.05 + 0.009(55) = 0.545$ $WQV = (1.5*R_v *A)/12$ WQV = (1.5*0.545*2.0)/12 WQV = 0.136 acre-ftWQV = 5,924 cubic ft Drainage Report Sources for Community Independent Living, Apple Blossom Lane Little Rock, Pulaski County, Arkansas Page 5 of 6

The total volume of the Stormtech chambers is 16,380 CF, which is above the WQv of 5,924 CF. The bioretention area, located in the parking lot island, is used as pre-treatment for the underground detention to remove heavy metals from the parking lot, reduce TSS loading, and catch floatables. Specifications for the ADS system can be found in Appendix C.

E. Downstream Analysis

A downstream analysis was completed to determine potential impacts. The site area and the contributing drainage areas to the limit of the zone of influence (10% point) is shown in Exhibit VI. Hydraflow Hydrographs software was used to assess the peak flow and timing of the watershed. Figures 1 and 2 provide the pre-development and post-development hydrographs at the 10% point. The calculations and results for all storm events can be found in Appendix B.

F. Storm System Design

Hydraulic calculations for the proposed storm drains were done using Rational Method hydrology and StormCAD software. The contributing drainage areas to the drainage systems are shown in Exhibit VII. The results of the hydraulic and inlet calculations are contained in Appendix D. A summary of the roadway inlets is provided in Table 6. As shown, the storm sewer system is adequate to convey the 25-Year storm event to discharge the points without the surcharge. Analysis of the system under the 100-Year storm event was also completed and can be found in Appendix D. Drainage Report Sources for Community Independent Living, Apple Blossom Lane Little Rock, Pulaski County, Arkansas Page 6 of 6

Inlet	Roadway Classification	Roadway Width (ft)	Allowable Spread	Actual Spread
CB-6	Local	30	10	6.4
CB-7	Local	30	10	4.9
CB-9	Local	30	10	6.1

Table 6: Roadway Inlet Calculations

G. Conclusion

As demonstrated above by the supporting calculations, the proposed drainage system meets the requirements of the City of Little Rock.

I, <u>Stoney Little</u>, Registered Professional Engineer No. <u>12345</u> in the State of Arkansas, hereby certify that the drainage studies, reports, calculations, designs, and specifications contained in this report have been prepared in accordance with sound engineering practice and principles, and the requirements of the City of Little Rock. Further, I hereby acknowledge that the review of the drainage studies, reports, calculations, designs, and specifications by the City of Little Rock or its representatives cannot and does not relieve me from any professional responsibility or liability.

WHOLEE Associates, Inc.

Stoney Little, P.E. Project Manager Sawyer Pine, E.I. Project Engineer

Final Drainage Report Template and Checklist

The City of Little Rock, Arkansas

Project name	Apple Blossom Development				
Engineer of Record					
Planning Project Number	<u>1 2 3 4</u>				
Revision no.	567				
Date	5/04/2025				

Submittal should include the following:

- 1. Image: 1. Ima
- 2. **PROJECT LOCATION** Include street address and Vicinity Map.
- 3. Image: 3. Ima
- 4. X NAME, ADDRESS, TELEPHONE NUMBER, AND EMAIL of the owner and developer of the property to be permitted.
- 5. X NARRATIVE SUMMARY The summary shall include a description of the methods used to meet the conveyance, detention, and water quality requirements. This includes at a minimum a description of the target pollutants and treatment train for water quality and a description of the detention strategy used to meet the downstream flood protection requirement. Also include a description of the off-site areas, onsite areas, condition of the downstream receiving areas, existing problems, changes to flows and flow volume, proposed improvements, detention, areas with potential for high pollutant loading, and final conclusions.
- 6. X EXISTING DRAINAGE AREA MAP Existing drainage area map on a 1inch = 200-feet minimum scale plan drawing, with 2 foot contours (1 foot contours on "flat" sites), that includes: study points at property lines, time of concentration path, bar scale, and the following information:
 - a. Aerial photograph of the project vicinity, covering the project area and the total lands that contribute runoff;
 - b. Existing drainage areas and flow patterns to downstream property line, establishing the study points;
 - c. Upstream and downstream drainage flow paths for all areas that contribute runoff to the existing site or receive runoff from the site. The downstream area(s) shall be shown as necessary to document the receiving conveyance system; and
 - d. \Box Existing land use conditions for the drainage areas that contribute runoff.

- 7. SOIL MAP Provide the most recent U.S. Soil Conservation Service soils and vegetation information for both the project area and the drainage area that contributes runoff on a separate map from the Existing Drainage Area Map.
- 8. A **PROPOSED DRAINAGE AREA MAP** Proposed drainage area site map on a 1-inch = 200-feet minimum scale plan drawing, with 2' contours (1 foot contours on "flat" sites), that include: study points, time of concentration path, bar scale, and the following information:
 - a. D Proposed drainage areas and flow patterns and, if applicable, natural feature protection areas, green stormwater practice and infiltration areas;
 - b. Upstream and downstream drainage flow paths for all areas that contribute runoff to the proposed development site or receive runoff from the site. The downstream area(s) shall be shown as necessary to document the receiving conveyance system;
 - c. D Proposed land use conditions for the development site and drainage areas that contribute runoff; and
 - d. D Proposed locations of grading and placement of fill material within the project area and drainage areas that contribute runoff.
- 9. WATER QUALITY Calculations and documentation indicating the target pollutants and the required water quality treatment volume.
 - a. Derivide calculations for each structural control indicating the corresponding level of treatment; and,
 - b. D Provide a map showing the impervious area and structural controls
- 10. ☑ **DOWNSTREAM FLOOD PROTECTION** Provide calculations and documentation indicating that the post-development peak discharge rate does not exceed the pre-development rate for the 2-year, 5-year, 10-year, 25-year, and 100-year, 24-hour storm events. The calculations shall include the following information:
 - a. A summary table of runoff discharge flows for the 2-year, 5-year, 10year, 25-year, and 100-year, 24- hour storm events for the predevelopment and post-development conditions for each study point. The summary shall include the existing and proposed flows along with supporting calculations for all of the discharge points to the receiving system. This includes the flow entering each drainage area and the flow generated within each drainage area on the site (do not separate onsite and offsite flows).
 - b. The effects of the 100-year, 24-hour storm event on the stormwater management system, adjacent property, and downstream facilities and property shall be evaluated. The 100-year flow shall be controlled through the use of structural stormwater controls to protect existing downstream property with no increase in the existing base flood elevation, or calculations shall be provided to

indicate that the on-site conveyance system will safely pass the flow and allow it to discharge into receiving waters where the floodplain is of capacity sufficient to accommodate significant additional discharges without causing damage.

- 11. ☑ CHECK FOR EXISTING DOWNSTREAM FLOODING Describe the existing downstream capacity of each receiving area (study point). Provide documentation of a downstream assessment using the 10% Rule in accordance with Section 7.5.3. Documentation shall include photographs of the existing structures downstream of the development as well as a map showing the locations and distances of downstream structures from the development.
- 12. STORMWATER DETENTION DESIGN If detention is required, include all computations and backup/support data including:
 - a. Detention basin size requirement computations (using an approved method).
 - b. Release structure design computations including design Water Surface Elevations for the 2-year, 5-year, 10-year, 25-year, and 100year storms.
 - c.

 Stage-Storage and Stage-Discharge curves for the detention facility.
 - d. A summary hydrograph of the effect of the detention facility for relevant storms, incorporated with bypass.
 - e. \Box Overflow structure(s) size and location(s);
 - f. \Box Outfall structure(s), location(s), and orifice size(s).
 - g. \Box Emergency overflow path.
 - h. \Box Results of downstream analysis.
- 13. A PAVEMENT DRAINAGE DESIGN Include a table listing street classification, width, allowable spread and actual spread for design storm.
- 14. STORM SEWER INLET DESIGN Include all computations for the design storm. Reference Table 4.3 in Chapter 4 for allowable spread and depth.
- 15. INLET DRAINAGE AREA MAP Provide a separate map showing the inlet layout and design including the drainage areas. The map should include the proposed design, drainage areas, time of concentrations paths, runoff coefficients, and bar scale.
- 16. STORM SEWER DESIGN Include all computations and hydraulic profiles for the design storm and 100-year, 24-hour storm.
- 17. CULVERT DESIGN Include all computations, hydraulic profile, and energy transition to channel.

18. OPEN CHANNEL FLOW DESIGN - Include computations for normal depth and

velocity.

- 19. **FEDERAL AND STATE REQUIREMENTS** (Answer <u>Yes</u> or <u>No</u> if required).
 - a. \Box Wetlands determination (if wetlands are present on the site).
 - b. \Box 404 permit required (include letter from USACE as an exhibit).
 - c. D NPDES Construction Stormwater "Notice of Intent" (ADEQ)(include as an exhibit if required).
 - d. ANRC permit/review for "dams" (required if a stormwater impoundment qualifies as a dam per ANRC regulations).
 - e. 🛛 Other
- 20. **EXHIBITS** Attach the following exhibits to the final drainage report.
 - a. 🛛 Grading and drainage construction drawings.
 - b. 🗆 Landscaping Plan.
 - c. 🛛 Operations and maintenance plan.
 - d.
 Letter from USACE if answered Yes to 19.b. above.
 - e. D Notice of Coverage (NOC) and completed SWPPP (sites 1 acre or larger).
 - f. D Master Drainage Plan (if part of a larger or phased project).
- 21. The following paragraph with relevant information included:

"I, <u>Stoney Little</u>, Registered Professional Engineer No. <u>12345</u> in the State of Arkansas, hereby certify that the drainage studies, reports, calculations, designs, and specifications contained in this report have been prepared in accordance with sound engineering practice and principles, and the requirements of the City of Little Rock. Further, I hereby acknowledge that the review of the drainage studies, reports, calculations, designs, and specifications by the City of Little Rock or its representatives cannot and does not relieve me from any professional responsibility or liability."

Signed & Sealed by Professional Engineer

22. 🗆 ARKANSAS REGISTERED ENGINEER SEAL

EXHIBIT I

EXHIBIT II

National Flood Hazard Layer FIRMette

Legend

Basemap Imagery Source: USGS National Map 2023

EXHIBIT III

Table 3.1 Rainfall Depths for 24-hour Duration Storm.

Storm Event	2-year	5-year	10-year	25-year	50-year	100-year
Depth (in)	4.19	5.12	5.94	7.14	8.13	9.17

Table 3.2 e,b,d Variable Coefficients.

Return Period		Variable	
Return renou	е	b	d
2yr	0.625	22.461	3.488
5yr	0.628	27.071	3.592
10yr	0.626	30.302	3.550
25yr	0.620	34.032	3.395
50yr	0.619	37.392	3.507
100yr	0.612	39.450	3.253
500yr	0.598	44.067	2.969

Cover type and hydrologic condition ²	Average percent	Curve I	Curve numbers for hydrologic soil groups ¹			
		А	В	С	D	
Cultivated land						
Without conservation treatment		72	81	88	91	
With conservation treatment			71	78	81	
Pasture or range land						
Poor condition		68	79	86	89	
Good condition		39	61	74	80	
Meadow						
Good condition		30	58	71	78	
Wood or forest land						
Thin stand, poor cover		45	66	77	83	
Good cover		30	55	70	77	
Open space (lawns, parks, golf courses,	cemeteries, etc.) ⁴		<u> </u>			
Poor condition (grass cover <50%)		68	79	86	89	
Fair condition (grass cover 50% to 75%)		49	69	79	84	
Good condition (grass cover > 75%)		39	61	74	80	
Impervious areas:						
Paved parking lots, roofs, driveways, etc. (excluding right-of- way)			98	98	98	
Streets and roads						
Paved; curbs and storm drains (excludin	g right-of-way)	98	98	98	98	
Paved; open ditches (including right-of-v	vay)	83	89	92	93	
Gravel (including right-of-way)		76	85	89	91	
Dirt (including right-of-way)		72	82	87	89	
Urban districts		•	•			
Commercial and business	85%	89	92	94	95	
Industrial	72%	81	88	91	93	
Residential districts by average lot size						
1/8 acre or less (town houses)	65%	77	85	90	92	
1/4 acre	38%	61	75	83	87	
1/3 acre	30%	57	72	81	86	
1/2 acre	25%	54	70	80	85	
1 acre 20%		51	68	79	84	
2 acres 12%			65	77	82	
Developing urban areas and newly grade (pervious areas only, no vegetation).	ed areas	77	86	91	94	

Table 3.3 TR-55 Runoff Curve Numbers1 (CN)

Antecedent Moisture Condition II, and Ia = 0.2S.
 Areas of compacted earthen fill shall be classified as Hydrologic Soil Group D.
 The average percent impervious area shown was used to develop the composite CNs.

Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition.

4. CNs shown are equivalent to those of pasture. Composite CNs may be computed for other combinations of open space cover type.

Source: USDA Technical Release 55 (TR-55)

EXHIBIT IV

EXHIBIT V

EXHIBIT VI

APPENDIX A

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for **Pulaski County, Arkansas**

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Pulaski County, Arkansas	13
CbC—Carnasaw-Urban land complex, 3 to 8 percent slopes	13
CMC—Carnasaw-Mountainburg association, undulating	14
CMF—Carnasaw-Mountainburg association, steep	15
SKC—Sallisaw-Leadvale association, undulating	17
References	20

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

	MAP LEGEND			MAP INFORMATION			
Area of Int	terest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:20,000.			
Soils	Soil Map Unit Polygons Soil Map Unit Lines	very ₩ Wet	Very Stony Spot Wet Spot	Warning: Soil Map may not be valid at this scale.			
Special	Soil Map Unit Points Point Features	۵ ••	Other Special Line Features	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed			
() ()	Blowout Borrow Pit	Water Features Streams and Canals		scale.			
¥ ♦	Clay Spot Closed Depression	+++ ~	Rails Interstate Highways	ghways Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)			
*	Gravel Pit Gravelly Spot	~	US Routes Major Roads				
0 	Landfill Lava Flow	Local Roads Background Aerial Photography	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the			
*	Marsh or swamp Mine or Quarry		Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.				
0	Perennial Water			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.			
+	Saline Spot			Soil Survey Area: Pulaski County, Arkansas Survey Area Data: Version 20, Sep 12, 2023			
 = 	Severely Eroded Spot			Soli map units are labeled (as space allows) for map scales 1:50,000 or larger.			
> Ø	Slide or Slip Sodic Spot			Date(s) aerial images were photographed: May 1, 2022—May 29, 2022			
<i>je</i>				compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.			
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI				
-----------------------------	---	--------------	----------------	--	--	--	--
СьС	Carnasaw-Urban land complex, 3 to 8 percent slopes	3.8	13.7%				
СМС	Carnasaw-Mountainburg association, undulating	8.9	32.5%				
CMF	Carnasaw-Mountainburg association, steep	10.2	37.2%				
SKC	Sallisaw-Leadvale association, undulating	4.6	16.7%				
Totals for Area of Interest		27.5	100.0%				

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Pulaski County, Arkansas

CbC—Carnasaw-Urban land complex, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: m04n Elevation: 500 to 1,800 feet Mean annual precipitation: 43 to 58 inches Mean annual air temperature: 50 to 72 degrees F Frost-free period: 200 to 260 days Farmland classification: Not prime farmland

Map Unit Composition

Carnasaw and similar soils: 51 percent Urban land: 49 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Carnasaw

Setting

Landform: Hills Landform position (three-dimensional): Crest Down-slope shape: Linear Across-slope shape: Convex Parent material: Clayey residuum weathered from shale

Typical profile

A - 0 to 2 inches: gravelly silt loam E - 2 to 6 inches: gravelly silt loam Bt1 - 6 to 38 inches: silty clay Bt2 - 38 to 49 inches: silty clay loam Cr - 49 to 52 inches: bedrock

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: 40 to 60 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: C Ecological site: F119XY006AR - Clayey Upland Hydric soil rating: No

Description of Urban Land

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8 Hydrologic Soil Group: D Hydric soil rating: No

CMC—Carnasaw-Mountainburg association, undulating

Map Unit Setting

National map unit symbol: m04j Elevation: 500 to 2,800 feet Mean annual precipitation: 43 to 58 inches Mean annual air temperature: 50 to 72 degrees F Frost-free period: 200 to 260 days Farmland classification: Not prime farmland

Map Unit Composition

Carnasaw and similar soils: 65 percent Mountainburg and similar soils: 25 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Carnasaw

Setting

Landform: Mountains Landform position (three-dimensional): Mountaintop Down-slope shape: Convex Across-slope shape: Convex Parent material: Clayey residuum weathered from shale

Typical profile

A - 0 to 2 inches: gravelly silt loam E - 2 to 6 inches: gravelly silt loam Bt1 - 6 to 38 inches: silty clay Bt2 - 38 to 49 inches: silty clay loam Cr - 49 to 52 inches: bedrock

Properties and qualities

Slope: 3 to 12 percent
Depth to restrictive feature: 40 to 60 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: C *Ecological site:* F119XY006AR - Clayey Upland *Hydric soil rating:* No

Description of Mountainburg

Setting

Landform: Mountains Landform position (three-dimensional): Mountaintop Down-slope shape: Convex Across-slope shape: Convex Parent material: Stony, loamy residuum weathered from sandstone

Typical profile

A - 0 to 1 inches: stony fine sandy loam E - 1 to 6 inches: stony sandy loam

Bt - 6 to 15 inches: very gravelly fine sandy loam

R - 15 to 20 inches: bedrock

Properties and qualities

Slope: 3 to 12 percent
Depth to restrictive feature: 12 to 20 inches to lithic bedrock
Drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 1.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: D Ecological site: F119XY003AR - Shallow Upland Hydric soil rating: No

Minor Components

Leadvale

Percent of map unit: 10 percent *Ecological site:* F119XY007AR - Loamy Upland *Hydric soil rating:* No

CMF—Carnasaw-Mountainburg association, steep

Map Unit Setting

National map unit symbol: m04k Elevation: 500 to 2,800 feet Mean annual precipitation: 43 to 58 inches Mean annual air temperature: 50 to 72 degrees F Frost-free period: 200 to 260 days Farmland classification: Not prime farmland

Map Unit Composition

Carnasaw and similar soils: 65 percent *Mountainburg and similar soils:* 20 percent *Rock outcrop:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Carnasaw

Setting

Landform: Mountains Landform position (three-dimensional): Mountainflank Down-slope shape: Convex Across-slope shape: Linear Parent material: Clayey residuum weathered from shale

Typical profile

A - 0 to 2 inches: gravelly silt loam E - 2 to 6 inches: gravelly silt loam Bt1 - 6 to 38 inches: silty clay Bt2 - 38 to 49 inches: silty clay loam Cr - 49 to 52 inches: bedrock

Properties and qualities

Slope: 12 to 40 percent
Depth to restrictive feature: 40 to 60 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: C Ecological site: F119XY006AR - Clayey Upland Hydric soil rating: No

Description of Mountainburg

Setting

Landform: Mountains Landform position (three-dimensional): Mountainflank Down-slope shape: Convex Across-slope shape: Linear Parent material: Stony, loamy residuum weathered from sandstone

Typical profile

A - 0 to 1 inches: stony fine sandy loam

- E 1 to 6 inches: stony sandy loam
- *Bt* 6 to 15 inches: very gravelly fine sandy loam
- R 15 to 20 inches: bedrock

Properties and qualities

Slope: 12 to 40 percent
Depth to restrictive feature: 12 to 20 inches to lithic bedrock
Drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 1.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: F119XY003AR - Shallow Upland Hydric soil rating: No

Description of Rock Outcrop

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydrologic Soil Group: D Hydric soil rating: No

SKC—Sallisaw-Leadvale association, undulating

Map Unit Setting

National map unit symbol: m05k Elevation: 250 to 2,300 feet Mean annual precipitation: 43 to 58 inches Mean annual air temperature: 50 to 72 degrees F Frost-free period: 200 to 260 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Sallisaw and similar soils: 55 percent Leadvale and similar soils: 45 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Sallisaw

Setting

Landform: Stream terraces

Landform position (three-dimensional): Riser Down-slope shape: Convex Across-slope shape: Linear Parent material: Loamy and gravelly alluvium

Typical profile

Ap - 0 to 7 inches: silt loam Bt - 7 to 27 inches: silt loam 2BCt - 27 to 72 inches: very gravelly silt loam

Properties and qualities

Slope: 2 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 6.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: F119XY007AR - Loamy Upland Hydric soil rating: No

Description of Leadvale

Setting

Landform: Valleys Down-slope shape: Convex Across-slope shape: Linear Parent material: Loamy pedisediment

Typical profile

Ap - 0 to 7 inches: silt loam Bt - 7 to 16 inches: silt loam Btx1 - 16 to 48 inches: silt loam Btx2 - 48 to 72 inches: silty clay loam

Properties and qualities

Slope: 2 to 8 percent
Depth to restrictive feature: 12 to 20 inches to fragipan; 48 to 60 inches to paralithic bedrock
Drainage class: Moderately well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.57 in/hr)
Depth to water table: About 16 to 30 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Custom Soil Resource Report

Land capability classification (nonirrigated): 3e Hydrologic Soil Group: D Ecological site: F119XY007AR - Loamy Upland Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

APPENDIX B

Watershed Model Schematic

1

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Watershed Model Schematic......1

2 - Year	
Summary Report	. 2
Hydrograph Reports	. 3
Hydrograph No. 1, SCS Runoff, Predevelopment A	. 3
TR-55 Tc Worksheet	. 4
Hydrograph No. 2, SCS Runoff, Predevelopment B	5
TR-55 Tc Worksheet	. 6
Hydrograph No. 3, SCS Runoff, Undetained A	. 7
TR-55 Tc Worksheet	. 8
Hydrograph No. 4, SCS Runoff, Detained A	. 9
TR-55 Tc Worksheet	10
Hydrograph No. 5, SCS Runoff, Undetained B	11
TR-55 Tc Worksheet	12
Hydrograph No. 6, SCS Runoff, Undetained B2	13
Hydrograph No. 7, Reservoir, ADS Underground System	14
Pond Report - <new pond=""></new>	15
Hydrograph No. 8, Combine, Total Post-Development A	16
Hydrograph No. 9, Combine, Total Post-Development B	17
Hydrograph No. 10, SCS Runoff, Pre-development Offsite	18
TR-55 Tc Worksheet	19
Hydrograph No. 11, Combine, Pre-Development 10%	20
Hydrograph No. 12, SCS Runoff, Post-development Offsite	21
TR-55 Tc Worksheet	22
Hydrograph No. 13, Combine, Post-Development 10%	23

5 - Year

Зиттагу керогт 2	
Hydrograph Reports 2	25
Hydrograph No. 1, SCS Runoff, Predevelopment A 2	25
Hydrograph No. 2, SCS Runoff, Predevelopment B 2	26
Hydrograph No. 3, SCS Runoff, Undetained A 2	27
Hydrograph No. 4, SCS Runoff, Detained A 2	28
Hydrograph No. 5, SCS Runoff, Undetained B 2	29
Hydrograph No. 6, SCS Runoff, Undetained B2 3	30
Hydrograph No. 7, Reservoir, ADS Underground System	31
Hydrograph No. 8, Combine, Total Post-Development A 3	32
Hydrograph No. 9, Combine, Total Post-Development B	33
Hydrograph No. 10, SCS Runoff, Pre-development Offsite	34
Hydrograph No. 11, Combine, Pre-Development 10%	35
Hydrograph No. 12, SCS Runoff, Post-development Offsite	36
Hydrograph No. 13, Combine, Post-Development 10%	37

10 - Year

Summary Report	38
Hydrograph Reports	39
Hydrograph No. 1, SCS Runoff, Predevelopment A	39

Hydrograph No. 3, SCS Runoff, Undetained A	Hydrograph No. 2, SCS Runoff, Predevelopment B	40
Hydrograph No. 4, SCS Runoff, Detained A	Hydrograph No. 3, SCS Runoff, Undetained A	41
Hydrograph No. 5, SCS Runoff, Undetained B. 43 Hydrograph No. 6, SCS Runoff, Undetained B2. 44 Hydrograph No. 7, Reservoir, ADS Underground System. 45 Hydrograph No. 8, Combine, Total Post-Development A. 46 Hydrograph No. 9, Combine, Total Post-Development B. 47 Hydrograph No. 10, SCS Runoff, Pre-development Offsite. 48 Hydrograph No. 11, Combine, Pre-Development 10%. 49 Hydrograph No. 12, SCS Runoff, Post-development Offsite. 50 Hydrograph No. 13, Combine, Post-Development 10%. 51 - Year 52 Hydrograph No. 1, SCS Runoff, Predevelopment A. 53 Hydrograph No. 2, SCS Runoff, Predevelopment A. 53	Hydrograph No. 4, SCS Runoff, Detained A	42
Hydrograph No. 6, SCS Runoff, Undetained B2	Hydrograph No. 5, SCS Runoff, Undetained B	43
Hydrograph No. 7, Reservoir, ADS Underground System. 45 Hydrograph No. 8, Combine, Total Post-Development A. 46 Hydrograph No. 9, Combine, Total Post-Development B. 47 Hydrograph No. 10, SCS Runoff, Pre-development Offsite. 48 Hydrograph No. 11, Combine, Pre-Development 10%. 49 Hydrograph No. 12, SCS Runoff, Post-development Offsite. 50 Hydrograph No. 13, Combine, Post-Development 10%. 51 - Year 52 Hydrograph No. 1, SCS Runoff, Predevelopment A. 53 Hydrograph No. 13, Combine, Post-Development 10%. 51 - Year 52 Hydrograph No. 1, SCS Runoff, Predevelopment A. 53 Hydrograph No. 2, SCS Runoff, Predevelopment A. 53	Hydrograph No. 6, SCS Runoff, Undetained B2	44
Hydrograph No. 8, Combine, Total Post-Development A. 46 Hydrograph No. 9, Combine, Total Post-Development B. 47 Hydrograph No. 10, SCS Runoff, Pre-development Offsite. 48 Hydrograph No. 11, Combine, Pre-Development 10%. 49 Hydrograph No. 12, SCS Runoff, Post-development Offsite. 50 Hydrograph No. 13, Combine, Post-Development 10%. 51 - Year 52 Hydrograph No. 1, SCS Runoff, Predevelopment A. 53	Hydrograph No. 7, Reservoir, ADS Underground System	45
Hydrograph No. 9, Combine, Total Post-Development B. 47 Hydrograph No. 10, SCS Runoff, Pre-development Offsite. 48 Hydrograph No. 11, Combine, Pre-Development 10%. 49 Hydrograph No. 12, SCS Runoff, Post-development Offsite. 50 Hydrograph No. 13, Combine, Post-Development 10%. 51 - Year 52 Hydrograph Report. 53 Hydrograph No. 1, SCS Runoff, Predevelopment A. 53 Hydrograph No. 1, SCS Runoff, Predevelopment A. 53 Hydrograph No. 1, SCS Runoff, Predevelopment A. 53	Hydrograph No. 8, Combine, Total Post-Development A	46
Hydrograph No. 10, SCS Runoff, Pre-development Offsite. 48 Hydrograph No. 11, Combine, Pre-Development 10%. 49 Hydrograph No. 12, SCS Runoff, Post-development Offsite. 50 Hydrograph No. 13, Combine, Post-Development 10%. 50 - Year 51 Summary Report. 52 Hydrograph No. 1, SCS Runoff, Predevelopment A. 53 Hydrograph No. 1, SCS Runoff, Predevelopment A. 53 Hydrograph No. 1, SCS Runoff, Predevelopment A. 53	Hydrograph No. 9, Combine, Total Post-Development B	47
Hydrograph No. 11, Combine, Pre-Development 10%	Hydrograph No. 10, SCS Runoff, Pre-development Offsite	48
Hydrograph No. 12, SCS Runoff, Post-development Offsite	Hydrograph No. 11, Combine, Pre-Development 10%	49
Hydrograph No. 13, Combine, Post-Development 10%	Hydrograph No. 12, SCS Runoff, Post-development Offsite	50
- Year Summary Report	Hydrograph No. 13, Combine, Post-Development 10%	51
Summary Report. 52 Hydrograph Reports. 53 Hydrograph No. 1, SCS Runoff, Predevelopment A. 53 Hydrograph No. 2, SCS Runoff, Predevelopment B. 54	- Year	
Hydrograph Reports 53 Hydrograph No. 1, SCS Runoff, Predevelopment A 53 Hydrograph No. 2, SCS Runoff, Predevelopment A 54	Summary Report	52
Hydrograph No. 1, SCS Runoff, Predevelopment A	Hydrograph Reports	53
Hydrograph No. 2, SCS Punoff, Prodovolonmont P. 54	Hydrograph No. 1, SCS Runoff, Predevelopment A	53
Tyulograph No. 2, 303 Kulloll, Fredevelopment D	Hydrograph No. 2, SCS Runoff, Predevelopment B	54

Hydrograph No. 1, SCS Runoff, Predevelopment A	53
Hydrograph No. 2, SCS Runoff, Predevelopment B	54
Hydrograph No. 3, SCS Runoff, Undetained A	55
Hydrograph No. 4, SCS Runoff, Detained A	56
Hydrograph No. 5, SCS Runoff, Undetained B	57
Hydrograph No. 6, SCS Runoff, Undetained B2	58
Hydrograph No. 7, Reservoir, ADS Underground System	59
Hydrograph No. 8, Combine, Total Post-Development A	60
Hydrograph No. 9, Combine, Total Post-Development B	61
Hydrograph No. 10, SCS Runoff, Pre-development Offsite	62
Hydrograph No. 11, Combine, Pre-Development 10%	63
Hydrograph No. 12, SCS Runoff, Post-development Offsite	64
Hydrograph No. 13, Combine, Post-Development 10%	65

100 - Year

25

Summary Report	66
Hydrograph Reports	67
Hydrograph No. 1, SCS Runoff, Predevelopment A	67
Hydrograph No. 2, SCS Runoff, Predevelopment B	68
Hydrograph No. 3, SCS Runoff, Undetained A	69
Hydrograph No. 4, SCS Runoff, Detained A	70
Hydrograph No. 5, SCS Runoff, Undetained B	71
Hydrograph No. 6, SCS Runoff, Undetained B2	72
Hydrograph No. 7, Reservoir, ADS Underground System	73
Hydrograph No. 8, Combine, Total Post-Development A	74
Hydrograph No. 9, Combine, Total Post-Development B	75
Hydrograph No. 10, SCS Runoff, Pre-development Offsite	76
Hydrograph No. 11, Combine, Pre-Development 10%	77
Hydrograph No. 12, SCS Runoff, Post-development Offsite	78
Hydrograph No. 13, Combine, Post-Development 10%	79
DF Report	80

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	5.795	1	720	14,013				Predevelopment A
2	SCS Runoff	2.992	1	720	7,257				Predevelopment B
3	SCS Runoff	0.998	1	717	1,905				Undetained A
4	SCS Runoff	7.835	1	720	19,699				Detained A
5	SCS Runoff	2.422	1	719	5,518				Undetained B
6	SCS Runoff	0.340	1	717	741				Undetained B2
7	Reservoir	2.355	1	731	19,698	4	1230.51	5,373	ADS Underground System
8	Combine	3.026	1	717	21,603	3, 7			Total Post-Development A
9	Combine	2.738	1	719	6,260	5, 6,			Total Post-Development B
10	SCS Runoff	38.09	1	723	104,199				Pre-development Offsite
11	Combine	46.49	1	722	125,469	1, 2, 10			Pre-Development 10%
12	SCS Runoff	38.09	1	723	104,199				Post-development Offsite
13	Combine	42.99	1	722	132,062	8, 9, 12			Post-Development 10%
Littl	Little_Rock_Example_Submittal_1.gpw Return Period: 2 Year Wednesday, 05 / 8 / 2024							v, 05 / 8 / 2024	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Predevelopment A

Hydrograph type	= SCS Runoff	Peak discharge	= 5.795 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.00 hrs
Time interval	= 1 min	Hyd. volume	= 14,013 cuft
Drainage area	= 1.790 ac	Curve number	= 79
Basin Slope	= 2.0 %	Hydraulic length	= 130 ft
Tc method	= TR55	Time of conc. (Tc)	= 11.00 min
Total precip.	= 4.19 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Predevelopment A

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 100.0 = 4.19 = 2.20		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 8.24	+	0.00	+	0.00	=	8.24
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 600.00 = 5.70 = Unpaved =3.85	d	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 2.60	+	0.00	+	0.00	=	2.60
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 3.40 = 14.50 = 0.50 = 0.013 =3.07		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})25.0		0.0		0.0		
Travel Time (min)	= 0.14	+	0.00	+	0.00	=	0.14
Total Travel Time, Tc							11.00 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

Predevelopment B

Hydrograph type =	SCS Runoff	Peak discharge	= 2.992 cfs
Storm frequency =	= 2 yrs	Time to peak	= 12.00 hrs
Time interval =	= 1 min	Hyd. volume	= 7,257 cuft
Drainage area =	= 0.830 ac	Curve number	= 82*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= TR55	Time of conc. (Tc)	= 10.60 min
Total precip. =	= 4.19 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.120 x 98) + (0.710 x 79)] / 0.830

5

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

Predevelopment B

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%) Travel Time (min)	= 0.150 = 100.0 = 4.19 = 2.20 = 8.24	+	0.011 0.0 0.00 0.00 0.00	+	0.011 0.0 0.00 0.00 0.00	=	8.24
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 170.00 = 4.00 = Unpave =3.23	d	62.00 26.00 Unpave 8.23	ed	0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.88	+	0.13	+	0.00	=	1.00
Channel Flow							
X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 3.00 = 12.00 = 3.20 = 0.030 =3.51		1.77 4.71 4.20 0.013 12.19		3.14 6.28 1.20 0.012		
					8.55		
Flow length (ft)	({0})230.0		147.0		41.0		
Travel Time (min)	= 1.09	+	0.20	+	0.08	=	1.37
Total Travel Time, Tc							10.60 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Undetained A

Hydrograph type	= SCS Runoff	Peak discharge	= 0.998 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.95 hrs
Time interval	= 1 min	Hyd. volume	= 1,905 cuft
Drainage area	= 0.230 ac	Curve number	= 81*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 4.40 min
Total precip.	= 4.19 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.200 x 79) + (0.030 x 98)] / 0.230

7

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Undetained A

<u>Description</u>	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 37.0 = 4.19 = 2.20		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00	_	2 72
Travel Time (min)	= 3.72	Ŧ	0.00	Ŧ	0.00	-	3.12
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 63.00 = 4.00 = Unpave =3.23	d	20.00 26.50 Unpave 8.31	ed	0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.33	+	0.04	+	0.00	=	0.37
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 1.50 = 6.10 = 3.20 = 0.030 =3.47		1.77 4.71 3.60 0.013 11.29		3.14 6.28 1.20 0.012 8.55		
Flow length (ft)	({0})18.5		123.0		15.0		
Travel Time (min)	= 0.09	+	0.18	+	0.03	=	0.30
Total Travel Time, Tc							4.40 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Detained A

Hydrograph type	= SCS Runoff	Peak discharge	= 7.835 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.00 hrs
Time interval	= 1 min	Hyd. volume	= 19,699 cuft
Drainage area	= 1.720 ac	Curve number	= 90*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.40 min
Total precip.	= 4.19 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.970 x 98) + (0.750 x 79)] / 1.720

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Detained A

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%) Travel Time (min)	= 0.150 = 100.0 = 4.19 = 2.20 = 8.24	÷	0.011 0.0 0.00 0.00 0.00	+	0.011 0.0 0.00 0.00 0.00	=	8.24
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 238.00 = 4.60 = Unpave =3.46	d	12.00 33.00 Unpave 9.27	d	104.00 1.50 Paved 2.49		
Travel Time (min)	= 1.15	+	0.02	+	0.70	=	1.86
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 1.77 = 4.71 = 16.00 = 0.013 =23.80		1.77 4.71 1.70 0.013 7.76		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})61.0		122.0		0.0		
Travel Time (min)	= 0.04	+	0.26	+	0.00	=	0.30
Total Travel Time, Tc							10.40 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Undetained B

Hydrograph type	= SCS Runoff	Peak discharge	= 2.422 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.98 hrs
Time interval	= 1 min	Hyd. volume	= 5,518 cuft
Drainage area	= 0.620 ac	Curve number	= 83*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.00 min
Total precip.	= 4.19 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.130 x 98) + (0.490 x 79)] / 0.620

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Undetained B

<u>Description</u>	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 100.0 = 4.19 = 2.20		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 8.24	+	0.00	+	0.00	=	8.24
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 170.00 = 4.00 = Unpave =3.23	d	55.00 26.50 Unpave 8.31	ed	0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.88	+	0.11	+	0.00	=	0.99
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 1.50 = 6.10 = 3.20 = 0.030 =3.47		1.77 4.71 3.60 0.013 11.29		3.14 6.28 1.20 0.012 8.55		
Flow length (ft)	({0})50.0		333.0		41.0		
Travel Time (min)	= 0.24	+	0.49	+	0.08	=	0.81
Total Travel Time, Tc							10.00 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Undetained B2

Hydrograph type =	= SCS Runoff	Peak discharge	= 0.340 cfs
Storm frequency =	= 2 yrs	Time to peak	= 11.95 hrs
Time interval	= 1 min	Hyd. volume	= 741 cuft
Drainage area =	= 0.060 ac	Curve number	= 92*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.19 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 79) + (0.040 x 98)] / 0.060

13

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

ADS Underground System

Hydrograph type	= Reservoir	Peak discharge	= 2.355 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.18 hrs
Time interval	= 1 min	Hyd. volume	= 19,698 cuft
Inflow hyd. No.	= 4 - Detained A	Max. Elevation	= 1230.51 ft
Reservoir name	= <new pond=""></new>	Max. Storage	= 5,373 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 1 - <New Pond>

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 1228.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Contour area (sqft) Incr. Storage (cuft)		
0.00	1228.00	00	0	0	
1.00	1229.00	1,000	333	333	
2.00	1230.00	3,000	1,910	2,244	
3.00	1231.00	10,000	6,158	8,402	
4.00	1232.00	12,500	11,226	19,628	
5.00	1233.00	15,000	13,730	33,358	
6.00	1234.00	17,000	15,988	49,346	

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 10.00	10.00	0.00	0.00	Crest Len (ft)	= 1.00	0.00	0.00	0.00
Span (in)	= 10.00	10.00	0.00	0.00	Crest El. (ft)	= 1234.00	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 1228.00	1228.00	0.00	0.00	Weir Type	= Rect			
Length (ft)	= 55.00	0.50	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.35	0.10	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

15

Stage (ft)

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Total Post-Development A

= Combine	Peak discharge	= 3.026 cfs
= 2 yrs	Time to peak	= 11.95 hrs
= 1 min	Hyd. volume	= 21,603 cuft
= 3, 7	Contrib. drain. area	= 0.230 ac
	= Combine = 2 yrs = 1 min = 3, 7	= CombinePeak discharge= 2 yrsTime to peak= 1 minHyd. volume= 3, 7Contrib. drain. area

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Total Post-Development B

Hydrograph type	= Combine	Peak discharge	= 2.738 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.98 hrs
Time interval	= 1 min	Hyd. volume	= 6,260 cuft
Inflow hyds.	= 5,6	Contrib. drain. area	= 0.680 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Pre-development Offsite

SCS Runoff	Peak discharge	= 38.09 cfs
= 2 yrs	Time to peak	= 12.05 hrs
= 1 min	Hyd. volume	= 104,199 cuft
= 18.000 ac	Curve number	= 72*
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 13.80 min
= 4.19 in	Distribution	= Type II
= 24 hrs	Shape factor	= 484
	 SCS Runoff 2 yrs 1 min 18.000 ac 0.0 % TR55 4.19 in 24 hrs 	SCS RunoffPeak discharge2 yrsTime to peak1 minHyd. volume18.000 acCurve number0.0 %Hydraulic lengthTR55Time of conc. (Tc)4.19 inDistribution24 hrsShape factor

* Composite (Area/CN) = [(2.140 x 79) + (0.560 x 92) + (15.300 x 70)] / 18.000

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Pre-development Offsite

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 100.0 = 4.19 = 9.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 4.69	+	0.00	+	0.00	=	4.69
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 301.00 = 8.00 = Unpaved =4.56	I	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 1.10	+	0.00	+	0.00	=	1.10
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 4.00 = 16.00 = 2.70 = 0.040 =2.42		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})1157.0		0.0		0.0		
Travel Time (min)	= 7.98	+	0.00	+	0.00	=	7.98
Total Travel Time, Tc					13.80 min		

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

Pre-Development 10%

Hydrograph type	= Combine	Peak discharge	= 46.49 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.03 hrs
Time interval	= 1 min	Hyd. volume	= 125,469 cuft
Inflow hyds.	= 1, 2, 10	Contrib. drain. area	= 20.620 ac

20

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 12

Post-development Offsite

Hydrograph type =	= SCS Runoff	Peak discharge	= 38.09 cfs
Storm frequency :	= 2 yrs	Time to peak	= 12.05 hrs
Time interval	= 1 min	Hyd. volume	= 104,199 cuft
Drainage area :	= 18.000 ac	Curve number	= 72
Basin Slope :	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= TR55	Time of conc. (Tc)	= 13.80 min
Total precip.	= 4.19 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

21

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 12

Post-development Offsite

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 100.0 = 4.19 = 9.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 4.69	+	0.00	+	0.00	=	4.69
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 301.00 = 8.00 = Unpaved =4.56	1	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 1.10	+	0.00	+	0.00	=	1.10
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 4.00 = 16.00 = 2.70 = 0.040 =2.42		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})1157.0		0.0		0.0		
Travel Time (min)	= 7.98	+	0.00	+	0.00	=	7.98
Total Travel Time, Tc							13.80 min
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 13

Post-Development 10%

Hydrograph type =	= Combine	Peak discharge	= 42.99 cfs
Storm frequency =	= 2 yrs	Time to peak	= 12.03 hrs
Time interval =	= 1 min	Hyd. volume	= 132,062 cuft
Inflow hyds.	= 8, 9, 12	Contrib. drain. area	= 18.000 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	7.921	1	720	19,214				Predevelopment A
2	SCS Runoff	4.000	1	720	9,772				Predevelopment B
3	SCS Runoff	1.335	1	716	2,581				Undetained A
4	SCS Runoff	9.947	1	720	25,370				Detained A
5	SCS Runoff	3.212	1	719	7,388				Undetained B
6	SCS Runoff	0.427	1	717	945				Undetained B2
7	Reservoir	2.560	1	732	25,369	4	1230.85	7,469	ADS Underground System
8	Combine	3.470	1	717	27,950	3, 7			Total Post-Development A
9	Combine	3.607	1	719	8,333	5, 6,			Total Post-Development B
10	SCS Runoff	55.44	1	722	149,673				Pre-development Offsite
11	Combine	66.81	1	722	178,660	1, 2, 10			Pre-Development 10%
12	SCS Runoff	55.44	1	722	149,673				Post-development Offsite
13	Combine	61.37	1	722	185,957	8, 9, 12			Post-Development 10%
Littl	e_Rock_Exar	nple_Sub	mittal_1	.gpw	Return P	eriod: 5 Ye	ar	Wednesday	/, 05 / 8 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Predevelopment A

Hydrograph type	= SCS Runoff	Peak discharge	= 7.921 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.00 hrs
Time interval	= 1 min	Hyd. volume	= 19,214 cuft
Drainage area	= 1.790 ac	Curve number	= 79
Basin Slope	= 2.0 %	Hydraulic length	= 130 ft
Tc method	= TR55	Time of conc. (Tc)	= 11.00 min
Total precip.	= 5.12 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

Predevelopment B

Hydrograph type	= SCS Runoff	Peak discharge	= 4.000 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.00 hrs
Time interval	= 1 min	Hyd. volume	= 9,772 cuft
Drainage area	= 0.830 ac	Curve number	= 82*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.60 min
Total precip.	= 5.12 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.120 x 98) + (0.710 x 79)] / 0.830

26

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Undetained A

Hydrograph type	= SCS Runoff	Peak discharge	= 1.335 cfs
Storm frequency	= 5 yrs	Time to peak	= 11.93 hrs
Time interval	= 1 min	Hyd. volume	= 2,581 cuft
Drainage area	= 0.230 ac	Curve number	= 81*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 4.40 min
Total precip.	= 5.12 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.200 x 79) + (0.030 x 98)] / 0.230

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Detained A

Hydrograph type	= SCS Runoff	Peak discharge	= 9.947 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.00 hrs
Time interval	= 1 min	Hyd. volume	= 25,370 cuft
Drainage area	= 1.720 ac	Curve number	= 90*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.40 min
Total precip.	= 5.12 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.970 x 98) + (0.750 x 79)] / 1.720

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Undetained B

Hydrograph type	= SCS Runoff	Peak discharge	= 3.212 cfs
Storm frequency	= 5 yrs	Time to peak	= 11.98 hrs
Time interval	= 1 min	Hyd. volume	= 7,388 cuft
Drainage area	= 0.620 ac	Curve number	= 83*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.00 min
Total precip.	= 5.12 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.130 x 98) + (0.490 x 79)] / 0.620

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Undetained B2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.427 cfs
Storm frequency	= 5 yrs	Time to peak	= 11.95 hrs
Time interval	= 1 min	Hyd. volume	= 945 cuft
Drainage area	= 0.060 ac	Curve number	= 92*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.12 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 79) + (0.040 x 98)] / 0.060

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

ADS Underground System

Hydrograph type	= Reservoir	Peak discharge	= 2.560 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.20 hrs
Time interval	= 1 min	Hyd. volume	= 25,369 cuft
Inflow hyd. No.	= 4 - Detained A	Max. Elevation	= 1230.85 ft
Reservoir name	<pre>= <new pond=""></new></pre>	Max. Storage	= 7,469 cuft

Storage Indication method used.

31

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Total Post-Development A

Hydrograph type	= Combine	Peak discharge	= 3.470 cfs
Storm frequency	= 5 yrs	Time to peak	= 11.95 hrs
Time interval	= 1 min	Hyd. volume	= 27,950 cuft
Inflow hyds.	= 3, 7	Contrib. drain. area	= 0.230 ac
Inflow hyds.	= 3, 7	Contrib. drain. area	= 0.230 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Total Post-Development B

Hydrograph type	= Combine	Peak discharge	= 3.607 cfs
Storm frequency	= 5 yrs	Time to peak	= 11.98 hrs
Time interval	= 1 min	Hyd. volume	= 8,333 cuft
Inflow hyds.	= 5,6	Contrib. drain. area	= 0.680 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Pre-development Offsite

Hydrograph type =	SCS Runoff	Peak discharge	= 55.44 cfs
Storm frequency =	= 5 yrs	Time to peak	= 12.03 hrs
Time interval =	= 1 min	Hyd. volume	= 149,673 cuft
Drainage area =	= 18.000 ac	Curve number	= 72*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= TR55	Time of conc. (Tc)	= 13.80 min
Total precip. =	= 5.12 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(2.140 x 79) + (0.560 x 92) + (15.300 x 70)] / 18.000

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

Pre-Development 10%

Hydrograph type	= Combine	Peak discharge	= 66.81 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.03 hrs
Time interval	= 1 min	Hyd. volume	= 178,660 cuft
Inflow hyds.	= 1, 2, 10	Contrib. drain. area	= 20.620 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 12

Post-development Offsite

Hydrograph type	= SCS Runoff	Peak discharge	= 55.44 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.03 hrs
Time interval	= 1 min	Hyd. volume	= 149,673 cuft
Drainage area	= 18.000 ac	Curve number	= 72
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 13.80 min
Total precip.	= 5.12 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

36

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 13

Post-Development 10%

Hydrograph type =	= Combine	Peak discharge	= 61.37 cfs
Storm frequency =	= 5 yrs	Time to peak	= 12.03 hrs
Time interval =	= 1 min	Hyd. volume	= 185,957 cuft
Inflow hyds.	= 8, 9, 12	Contrib. drain. area	= 18.000 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	9.835	1	720	23,982				Predevelopment A
2	SCS Runoff	4.898	1	720	12,058				Predevelopment B
3	SCS Runoff	1.637	1	716	3,197				Undetained A
4	SCS Runoff	11.80	1	720	30,425				Detained A
5	SCS Runoff	3.913	1	719	9,083				Undetained B
6	SCS Runoff	0.502	1	717	1,125				Undetained B2
7	Reservoir	2.696	1	732	30,423	4	1231.09	9,388	ADS Underground System
8	Combine	3.865	1	717	33,620	3, 7			Total Post-Development A
9	Combine	4.377	1	719	10,208	5, 6,			Total Post-Development B
10	SCS Runoff	71.53	1	722	192,376				Pre-development Offsite
11	Combine	85.55	1	722	228,416	1, 2, 10			Pre-Development 10%
12	SCS Runoff	71.53	1	722	192,376				Post-development Offsite
13	Combine	78.36	1	722	236,204	8, 9, 12			Post-Development 10%
Littl	∟ e_Rock_Exar	nple_Sub	⊥ mittal_1	.gpw	Return P	eriod: 10 Y	′ear	Wednesday	/, 05 / 8 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Predevelopment A

Hydrograph type	= SCS Runoff	Peak discharge	= 9.835 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.00 hrs
Time interval	= 1 min	Hyd. volume	= 23,982 cuft
Drainage area	= 1.790 ac	Curve number	= 79
Basin Slope	= 2.0 %	Hydraulic length	= 130 ft
Tc method	= TR55	Time of conc. (Tc)	= 11.00 min
Total precip.	= 5.94 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

Predevelopment B

Hydrograph type	= SCS Runoff	Peak discharge	= 4.898 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.00 hrs
Time interval	= 1 min	Hyd. volume	= 12,058 cuft
Drainage area	= 0.830 ac	Curve number	= 82*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.60 min
Total precip.	= 5.94 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.120 x 98) + (0.710 x 79)] / 0.830

40

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Undetained A

Hydrograph type	= SCS Runoff	Peak discharge	= 1.637 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.93 hrs
Time interval	= 1 min	Hyd. volume	= 3,197 cuft
Drainage area	= 0.230 ac	Curve number	= 81*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 4.40 min
Total precip.	= 5.94 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.200 x 79) + (0.030 x 98)] / 0.230

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Detained A

Hydrograph type	= SCS Runoff	Peak discharge	= 11.80 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.00 hrs
Time interval	= 1 min	Hyd. volume	= 30,425 cuft
Drainage area	= 1.720 ac	Curve number	= 90*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.40 min
Total precip.	= 5.94 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.970 x 98) + (0.750 x 79)] / 1.720

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Undetained B

Hydrograph type	= SCS Runoff	Peak discharge	= 3.913 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.98 hrs
Time interval	= 1 min	Hyd. volume	= 9,083 cuft
Drainage area	= 0.620 ac	Curve number	= 83*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.00 min
Total precip.	= 5.94 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.130 x 98) + (0.490 x 79)] / 0.620

43

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Undetained B2

Hydrograph type =	= SCS Runoff	Peak discharge	= 0.502 cfs
Storm frequency :	= 10 yrs	Time to peak	= 11.95 hrs
Time interval	= 1 min	Hyd. volume	= 1,125 cuft
Drainage area	= 0.060 ac	Curve number	= 92*
Basin Slope :	= 0.0 %	Hydraulic length	= 0 ft
Tc method :	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.94 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 79) + (0.040 x 98)] / 0.060

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

ADS Underground System

Hydrograph type	= Reservoir	Peak discharge	= 2.696 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.20 hrs
Time interval	= 1 min	Hyd. volume	= 30,423 cuft
Inflow hyd. No.	= 4 - Detained A	Max. Elevation	= 1231.09 ft
Reservoir name	= <new pond=""></new>	Max. Storage	= 9,388 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Total Post-Development A

Hydrograph type Storm frequency	= Combine = 10 vrs	Peak discharge Time to peak	= 3.865 cfs = 11 95 hrs
Time interval	= 1 min	Hyd. volume	= 33,620 cuft
Inflow hyds.	= 3, 7	Contrib. drain. area	= 0.230 ac

46

eunesuay, 05 / 6 / 20

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Total Post-Development B

Hydrograph type Storm frequency	= Combine = 10 yrs	Peak discharge Time to peak	= 4.377 cfs = 11.98 hrs
Time interval	= 1 min	Hyd. volume	= 10,208 cuft
Inflow hyds.	= 5,6	Contrib. drain. area	= 0.680 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Pre-development Offsite

Hydrograph type	= SCS Runoff	Peak discharge	= 71.53 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.03 hrs
Time interval	= 1 min	Hyd. volume	= 192,376 cuft
Drainage area	= 18.000 ac	Curve number	= 72*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 13.80 min
Total precip.	= 5.94 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(2.140 x 79) + (0.560 x 92) + (15.300 x 70)] / 18.000

48

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

Pre-Development 10%

Hydrograph type	= Combine	Peak discharge	= 85.55 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.03 hrs
Time interval	= 1 min	Hyd. volume	= 228,416 cuft
Inflow hyds.	= 1, 2, 10	Contrib. drain. area	= 20.620 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 12

Post-development Offsite

Hydrograph type	= SCS Runoff	Peak discharge	= 71.53 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.03 hrs
Time interval	= 1 min	Hyd. volume	= 192,376 cuft
Drainage area	= 18.000 ac	Curve number	= 72
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 13.80 min
Total precip.	= 5.94 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 13

Post-Development 10%

Hydrograph type	= Combine	Peak discharge	= 78.36 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.03 hrs
Time interval	= 1 min	Hyd. volume	= 236,204 cuft
Inflow hyds.	= 8, 9, 12	Contrib. drain. area	= 18.000 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	12.67	1	720	31,168				Predevelopment A
2	SCS Runoff	6.219	1	720	15,479				Predevelopment B
3	SCS Runoff	2.082	1	716	4,121				Undetained A
4	SCS Runoff	14.49	1	720	37,879				Detained A
5	SCS Runoff	4.941	1	719	11,613				Undetained B
6	SCS Runoff	0.613	1	717	1,391				Undetained B2
7	Reservoir	2.836	1	733	37,878	4	1231.35	12,321	ADS Underground System
8	Combine	4.444	1	717	41,998	3, 7			Total Post-Development A
9	Combine	5.506	1	719	13,004	5, 6,			Total Post-Development B
10	SCS Runoff	95.91	1	722	258,004				Pre-development Offsite
11	Combine	113.81	1	722	304,651	1, 2, 10			Pre-Development 10%
12	SCS Runoff	95.91	1	722	258,004				Post-development Offsite
13	Combine	104.00	1	722	313,006	8, 9, 12			Post-Development 10%
Littl	e_Rock_Exan	nple_Sub	mittal_1	.gpw	Return P	eriod: 25 Y	/ear	Wednesday	/, 05 / 8 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Predevelopment A

Hydrograph type	= SCS Runoff	Peak discharge	= 12.67 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.00 hrs
Time interval	= 1 min	Hyd. volume	= 31,168 cuft
Drainage area	= 1.790 ac	Curve number	= 79
Basin Slope	= 2.0 %	Hydraulic length	= 130 ft
Tc method	= TR55	Time of conc. (Tc)	= 11.00 min
Total precip.	= 7.14 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

Predevelopment B

Hydrograph type =	SCS Runoff	Peak discharge	= 6.219 cfs
Storm frequency =	= 25 yrs	Time to peak	= 12.00 hrs
Time interval	= 1 min	Hyd. volume	= 15,479 cuft
Drainage area =	= 0.830 ac	Curve number	= 82*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= TR55	Time of conc. (Tc)	= 10.60 min
Total precip. =	= 7.14 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.120 x 98) + (0.710 x 79)] / 0.830

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Undetained A

Hydrograph type	= SCS Runoff	Peak discharge	= 2.082 cfs
Storm frequency	= 25 yrs	Time to peak	= 11.93 hrs
Time interval	= 1 min	Hyd. volume	= 4,121 cuft
Drainage area	= 0.230 ac	Curve number	= 81*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 4.40 min
Total precip.	= 7.14 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.200 x 79) + (0.030 x 98)] / 0.230

55

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Detained A

Hydrograph type	= SCS Runoff	Peak discharge	= 14.49 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.00 hrs
Time interval	= 1 min	Hyd. volume	= 37,879 cuft
Drainage area	= 1.720 ac	Curve number	= 90*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.40 min
Total precip.	= 7.14 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.970 x 98) + (0.750 x 79)] / 1.720

56

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Undetained B

Hydrograph type	= SCS Runoff	Peak discharge	= 4.941 cfs
Storm frequency	= 25 yrs	Time to peak	= 11.98 hrs
Time interval	= 1 min	Hyd. volume	= 11,613 cuft
Drainage area	= 0.620 ac	Curve number	= 83*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.00 min
Total precip.	= 7.14 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.130 x 98) + (0.490 x 79)] / 0.620

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Undetained B2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.613 cfs
Storm frequency	= 25 yrs	Time to peak	= 11.95 hrs
Time interval	= 1 min	Hyd. volume	= 1,391 cuft
Drainage area	= 0.060 ac	Curve number	= 92*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.14 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 79) + (0.040 x 98)] / 0.060

58
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

ADS Underground System

Hydrograph type	= Reservoir	Peak discharge	= 2.836 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.22 hrs
Time interval	= 1 min	Hyd. volume	= 37,878 cuft
Inflow hyd. No.	= 4 - Detained A	Max. Elevation	= 1231.35 ft
Reservoir name	<pre>= <new pond=""></new></pre>	Max. Storage	= 12,321 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Total Post-Development A

Hydrograph type	= Combine	Peak discharge	= 4.444 cfs
Storm frequency	= 25 yrs	Time to peak	= 11.95 hrs
Time interval	= 1 min	Hyd. volume	= 41,998 cuft
Inflow hyds.	= 3, 7	Contrib. drain. area	= 0.230 ac

60

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Total Post-Development B

Hydrograph type	= Combine	Peak discharge	= 5.506 cfs
Time interval	= 25 yrs = 1 min	Hyd. volume	= 13,004 cuft
Inflow hyds.	= 5,6	Contrib. drain. area	= 0.680 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Pre-development Offsite

SCS Runoff	Peak discharge	= 95.91 cfs
25 yrs	Time to peak	= 12.03 hrs
1 min	Hyd. volume	= 258,004 cuft
18.000 ac	Curve number	= 72*
0.0 %	Hydraulic length	= 0 ft
TR55	Time of conc. (Tc)	= 13.80 min
7.14 in	Distribution	= Type II
24 hrs	Shape factor	= 484
	SCS Runoff 25 yrs 1 min 18.000 ac 0.0 % TR55 7.14 in 24 hrs	SCS RunoffPeak discharge25 yrsTime to peak1 minHyd. volume18.000 acCurve number0.0 %Hydraulic lengthTR55Time of conc. (Tc)7.14 inDistribution24 hrsShape factor

* Composite (Area/CN) = [(2.140 x 79) + (0.560 x 92) + (15.300 x 70)] / 18.000

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

Pre-Development 10%

Hydrograph type	= Combine	Peak discharge	= 113.81 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.03 hrs
Time interval	= 1 min	Hyd. volume	= 304,651 cuft
Inflow hyds.	= 1, 2, 10	Contrib. drain. area	= 20.620 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 12

Post-development Offsite

Hydrograph type	= SCS Runoff	Peak discharge	= 95.91 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.03 hrs
Time interval	= 1 min	Hyd. volume	= 258,004 cuft
Drainage area	= 18.000 ac	Curve number	= 72
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 13.80 min
Total precip.	= 7.14 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

22 \\\\

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 13

Post-Development 10%

Hydrograph type	= Combine	Peak discharge	= 104.00 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.03 hrs
Time interval	= 1 min	Hyd. volume	= 313,006 cuft
Inflow hyds.	= 8, 9, 12	Contrib. drain. area	= 18.000 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	17.48	1	720	43,688				Predevelopment A
2	SCS Runoff	8.449	1	720	21,396				Predevelopment B
3	SCS Runoff	2.834	1	716	5,722				Undetained A
4	SCS Runoff	19.01	1	720	50,583				Detained A
5	SCS Runoff	6.674	1	719	15,980				Undetained B
6	SCS Runoff	0.797	1	717	1,842				Undetained B2
7	Reservoir	3.068	1	735	50,581	4	1231.81	17,500	ADS Underground System
8	Combine	5.420	1	717	56,303	3, 7			Total Post-Development A
9	Combine	7.409	1	719	17,822	5, 6,			Total Post-Development B
10	SCS Runoff	138.33	1	722	374,710				Pre-development Offsite
11	Combine	162.82	1	721	439,794	1, 2, 10			Pre-Development 10%
12	SCS Runoff	138.33	1	722	374,710				Post-development Offsite
13	Combine	148.45	1	722	448,835	8, 9, 12			Post-Development 10%
Littl	e_Rock_Exar	nple_Sub	mittal_1	.gpw	Return P	eriod: 100	Year	Wednesday	y, 05 / 8 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Predevelopment A

Hydrograph type	= SCS Runoff	Peak discharge	= 17.48 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.00 hrs
Time interval	= 1 min	Hyd. volume	= 43,688 cuft
Drainage area	= 1.790 ac	Curve number	= 79
Basin Slope	= 2.0 %	Hydraulic length	= 130 ft
Tc method	= TR55	Time of conc. (Tc)	= 11.00 min
Total precip.	= 9.17 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

Predevelopment B

Hydrograph type =	SCS Runoff	Peak discharge	= 8.449 cfs
Storm frequency =	= 100 yrs	Time to peak	= 12.00 hrs
Time interval =	= 1 min	Hyd. volume	= 21,396 cuft
Drainage area =	= 0.830 ac	Curve number	= 82*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	- TR55	Time of conc. (Tc)	= 10.60 min
Total precip. =	= 9.17 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.120 x 98) + (0.710 x 79)] / 0.830

68

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Undetained A

Hydrograph type	= SCS Runoff	Peak discharge	= 2.834 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.93 hrs
Time interval	= 1 min	Hyd. volume	= 5,722 cuft
Drainage area	= 0.230 ac	Curve number	= 81*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 4.40 min
Total precip.	= 9.17 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.200 x 79) + (0.030 x 98)] / 0.230

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Detained A

Hydrograph type	= SCS Runoff	Peak discharge	= 19.01 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.00 hrs
Time interval	= 1 min	Hyd. volume	= 50,583 cuft
Drainage area	= 1.720 ac	Curve number	= 90*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.40 min
Total precip.	= 9.17 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.970 x 98) + (0.750 x 79)] / 1.720

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Undetained B

Hydrograph type	= SCS Runoff	Peak discharge	= 6.674 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.98 hrs
Time interval	= 1 min	Hyd. volume	= 15,980 cuft
Drainage area	= 0.620 ac	Curve number	= 83*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.00 min
Total precip.	= 9.17 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.130 x 98) + (0.490 x 79)] / 0.620

71

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Undetained B2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.797 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.95 hrs
Time interval	= 1 min	Hyd. volume	= 1,842 cuft
Drainage area	= 0.060 ac	Curve number	= 92*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 9.17 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 79) + (0.040 x 98)] / 0.060

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

ADS Underground System

Hydrograph type	= Reservoir	Peak discharge	= 3.068 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.25 hrs
Time interval	= 1 min	Hyd. volume	= 50,581 cuft
Inflow hyd. No.	= 4 - Detained A	Max. Elevation	= 1231.81 ft
Reservoir name	<pre>= <new pond=""></new></pre>	Max. Storage	= 17,500 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Total Post-Development A

Hydrograph type	= Combine = 100 vrs	Peak discharge	= 5.420 cfs = 11.95 brs
Time interval	$= 1 \min$	Hyd. volume	= 56,303 cuft
Inflow hyds.	= 3, 7	Contrib. drain. area	= 0.230 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Total Post-Development B

Hydrograph type Storm frequency	= Combine = 100 yrs	Peak discharge Time to peak	= 7.409 cfs = 11.98 hrs
Time interval	= 1 min	Hyd. volume	= 17,822 cuft
Inflow hyds.	= 5,6	Contrib. drain. area	= 0.680 ac

Wednesday, 05 / 8 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Pre-development Offsite

= SCS Runoff	Peak discharge	= 138.33 cfs
= 100 yrs	Time to peak	= 12.03 hrs
= 1 min	Hyd. volume	= 374,710 cuft
= 18.000 ac	Curve number	= 72*
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 13.80 min
= 9.17 in	Distribution	= Type II
= 24 hrs	Shape factor	= 484
	 SCS Runoff 100 yrs 1 min 18.000 ac 0.0 % TR55 9.17 in 24 hrs 	= SCS RunoffPeak discharge= 100 yrsTime to peak= 1 minHyd. volume= 18.000 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 9.17 inDistribution= 24 hrsShape factor

* Composite (Area/CN) = [(2.140 x 79) + (0.560 x 92) + (15.300 x 70)] / 18.000

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

Pre-Development 10%

Hydrograph type	= Combine	Peak discharge	= 162.82 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.02 hrs
Time interval	= 1 min	Hyd. volume	= 439,794 cuft
Inflow hyds.	= 1, 2, 10	Contrib. drain. area	= 20.620 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 12

Post-development Offsite

Hydrograph type	= SCS Runoff	Peak discharge	= 138.33 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.03 hrs
Time interval	= 1 min	Hyd. volume	= 374,710 cuft
Drainage area	= 18.000 ac	Curve number	= 72
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 13.80 min
Total precip.	= 9.17 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 13

Post-Development 10%

Hydrograph type =	Combine	Peak discharge	= 148.45 cfs
Storm frequency =	100 yrs	Time to peak	= 12.03 hrs
Time interval =	1 min	Hyd. volume	= 448,835 cuft
Inflow hyds. =	8, 9, 12	Contrib. drain. area	= 18.000 ac

79

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Return Period	Intensity-Duration-Frequency Equation Coefficients (FHA)							
(Yrs)	В	D	E	(N/A)				
1	0.0000	0.0000	0.0000					
2	69.8703	13.1000	0.8658					
3	0.0000	0.0000	0.0000					
5	79.2597	14.6000	0.8369					
10	88.2351	15.5000	0.8279					
25	102.6072	16.5000	0.8217					
50	114.8193	17.2000	0.8199					
100	127.1596	17.8000	0.8186					

File name: SampleFHA.idf

Intensity = B / (Tc + D)^E

Return	Intensity Values (in/hr)											
(Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	5.69	4.61	3.89	3.38	2.99	2.69	2.44	2.24	2.07	1.93	1.81	1.70
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	6.57	5.43	4.65	4.08	3.65	3.30	3.02	2.79	2.59	2.42	2.27	2.15
10	7.24	6.04	5.21	4.59	4.12	3.74	3.43	3.17	2.95	2.77	2.60	2.46
25	8.25	6.95	6.03	5.34	4.80	4.38	4.02	3.73	3.48	3.26	3.07	2.91
50	9.04	7.65	6.66	5.92	5.34	4.87	4.49	4.16	3.88	3.65	3.44	3.25
100	9.83	8.36	7.30	6.50	5.87	5.36	4.94	4.59	4.29	4.03	3.80	3.60

Tc = time in minutes. Values may exceed 60.

Precip. file name: Sample.pcp								
	Rainfall Precipitation Table (in)							
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
SCS 24-hour	0.00	4.19	0.00	5.12	5.94	7.14	8.13	9.17
SCS 6-Hr	0.00	1.80	0.00	0.00	2.60	0.00	0.00	4.00
Huff-1st	0.00	1.55	0.00	2.75	4.00	5.38	6.50	8.00
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Custom	0.00	1.75	0.00	2.80	3.90	5.25	6.00	7.10

APPENDIX C

	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>			PLAST URE
Revision By Date	OWHOLEE	PRELIMINARY NOT FUE CONSTRUCTION CONSTRUCTION Date: 5.04.2022 Project No: BBD-01	Keal Scaler 	

PLAN

ITION OUTLET STRUCTURE (Not to Scale)

APPENDIX D

Revision By Date Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent state Image: Descent sta	OWHOLEE
	AREA

25-Year Storm Event

Station (ft)

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

StormCAD [10.03.04.53] Page 1 of 1

Station (ft)

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666 StormCAD [10.03.04.53] Page 1 of 1

Elevation (ft)

Station (ft)

76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

CB-5 Rim: 1,234.85 ft Invert: 1,233.50 ft

> Bentley Systems, Inc. Haestad Methods Solution Center [10.03.04.53] Page 1 of 1

Profile Report Engineering Profile - South System To Study Point B

Station (ft)

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Elevation (ft)

StormCAD [10.03.04.53] Page 1 of 1

Profile Report Engineering Profile - South Yard Drain

Elevation (ft)

Station (ft)

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

StormCAD [10.03.04.53] Page 1 of 1

Scenario: Base Current Time Step: 0.000 h FlexTable: Catch Basin Table

Label	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Curb Opening Length (ft)	Capture Efficiency (Calculated) (%)	Flow (Captured) (cfs)	Hydraulic Grade Line (In) (ft)	Spread / Top Width (ft)	Depth (Gutter) (in)	Road Cross Slope (ft/ft)
CB-1	1,248.40	1,245.75	8.0	100.0	2.30	1,246.32	15.9	6.9	0.013
CB-2	1,249.00	1,245.00	4.0	100.0	0.83	1,245.66	3.6	6.1	0.040
CB-3	1,234.90	1,232.15	4.0	100.0	0.60	1,232.87	1.7	5.8	0.068
CB-4	1,233.05	1,230.05	8.0	100.0	0.87	1,230.85	2.2	5.7	0.050
CB-5	1,234.85	1,233.50	-	100.0	0.12	1,233.67	0.0	(N/A)	0.020
CB-6	1,245.10	1,242.30	4.0	65.6	0.84	1,242.64	6.4	1.5	0.020
CB-7	1,238.57	1,233.58	4.0	94.0	0.50	1,234.00	4.9	1.2	0.020
CB-8	1,232.44	1,227.47	-	100.0	0.03	1,227.88	1.4	0.3	0.020
CB-9	1,233.80	1,230.50	4.0	100.0	1.52	1,230.96	6.1	7.0	0.035
CB-9	1,234.65	1,233.25	-	100.0	0.24	1,233.50	0.0	(N/A)	0.020
CB-10	1,235.40	1,229.75	-	100.0	0.00	1,230.00	0.0	0.0	0.020

Scenario: Base Current Time Step: 0.000 h FlexTable: Catchment Table

Label	Outflow Element	Area (User Defined) (acres)	Runoff Coefficient (Rational)	Time of Concentration (min)	Catchment Intensity (in/h)	Flow (Total Out) (cfs)
AREA 1	CB-6	0.510	0.398	-	6.297	1.29
AREA 2	CB-1	0.620	0.593	-	6.224	2.30
AREA 3	CB-2	0.300	0.463	-	5.943	0.83
AREA 4	CB-5	0.030	0.560	6.000	7.294	0.12
AREA 5	CB-3	0.160	0.495	5.000	7.560	0.60
AREA 6	CB-4	0.150	0.885	-	6.483	0.87
AREA 7	CB-9	0.210	0.950	5.000	7.560	1.52
AREA 8	CB-9	0.060	0.528	5.000	7.560	0.24

Scenario: Base Current Time Step: 0.000 h FlexTable: Conduit Table

Label	Start Node	Stop Node	Invert (Start) (ft)	Invert (Stop) (ft)	Length (Scaled) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Flow (cfs)	Size (Display)	Velocity (ft/s)	Depth (Out) (ft)
CO-1	CB-1	CB-2	1,245.75	1,245.00	117.7	0.006	18.0	2.30	18 inch	4.05	0.66
CO-2	CB-2	CB-3	1,245.00	1,232.15	63.3	0.203	18.0	3.03	18 inch	15.03	0.72
CO-3	CB-3	CB-4	1,232.15	1,230.05	126.5	0.017	18.0	3.60	18 inch	6.47	0.80
CO-4	CB-9	0-2	1,230.50	1,229.25	13.2	0.095	18.0	1.52	18 inch	9.37	0.24
CO-4	CB-4	0-1	1,230.05	1,228.51	6.6	0.233	18.0	4.32	18 inch	11.33	0.44
CO-5	CB-5	CB-3	1,233.50	1,232.15	32.8	0.041	6.0	0.12	6 inch	4.56	0.72
CO-6	CB-6	CB-7	1,242.30	1,233.58	176.4	0.049	18.0	0.84	18 inch	6.26	0.42
CO-7	CB-7	CB-8	1,233.58	1,227.47	147.4	0.041	18.0	1.24	18 inch	6.58	0.24
CO-8	CB-8	0-2	1,227.47	1,226.96	41.3	0.012	24.0	1.24	24 inch	2.70	0.38
CO-9	CB-9	CB-10	1,233.25	1,229.75	96.7	0.036	6.0	0.24	6 inch	5.30	0.14
CO-10	CB-10	O-3	1,229.75	1,229.25	22.7	0.022	6.0	0.24	6 inch	4.43	0.16
Scenario: Base Current Time Step: 0.000 h FlexTable: Outfall Table

Label	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Hydraulic Grade (ft)	Flow (Total Out) (cfs)	System Flow Time (min)	System Intensity (in/h)	System CA (acres)
0-1	1,232.55	1,228.51	Free Outfall	1,228.95	4.32	11.486	5.835	0.735
0-2	1,233.80	1,229.25	Free Outfall	1,229.49	1.52	5.023	7.554	0.199
0-2	1,233.45	1,226.96	Free Outfall	1,227.34	1.23	10.848	6.004	0.203
O-3	1,234.65	1,229.25	Free Outfall	1,229.41	0.24	5.390	7.456	0.032

100-Year Storm Event

Station (ft)

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Profile Report Engineering Profile - North System To ADS System

Station (ft)

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Elevation (ft)

Profile Report

Station (ft)

76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Rim: 1,234.85 ft Invert: 1,233.50 ft

> Bentley Systems, Inc. Haestad Methods Solution Center [10.03.04.53] Page 1 of 1

Profile Report Engineering Profile - South System To Study Point B

Station (ft)

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Elevation (ft)

Profile Report Engineering Profile - South Yard Drain

Elevation (ft)

Station (ft)

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Scenario: Base Current Time Step: 0.000 h FlexTable: Catch Basin Table

Label	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Curb Opening Length (ft)	Capture Efficiency (Calculated) (%)	Flow (Captured) (cfs)	Hydraulic Grade Line (In) (ft)	Spread / Top Width (ft)	Depth (Gutter) (in)	Road Cross Slope (ft/ft)
CB-1	1,248.40	1,245.75	8.0	100.0	3.31	1,246.44	20.2	7.6	0.013
CB-2	1,249.00	1,245.00	4.0	100.0	1.19	1,245.80	4.5	6.6	0.040
CB-3	1,234.90	1,232.15	4.0	100.0	0.86	1,233.03	2.2	6.2	0.068
CB-4	1,233.05	1,230.05	8.0	100.0	1.25	1,231.01	2.7	6.0	0.050
CB-5	1,234.85	1,233.50	-	100.0	0.18	1,233.71	0.0	(N/A)	0.020
CB-6	1,245.10	1,242.30	4.0	55.7	1.03	1,242.68	7.4	1.8	0.020
CB-7	1,238.57	1,233.58	4.0	77.0	0.75	1,234.06	6.1	1.5	0.020
CB-8	1,232.44	1,227.47	-	100.0	0.23	1,227.96	2.9	0.7	0.020
CB-9	1,233.80	1,230.50	4.0	100.0	2.18	1,231.06	7.8	7.7	0.035
CB-9	1,234.65	1,233.25	-	100.0	0.35	1,233.55	0.0	(N/A)	0.020
CB-10	1,235.40	1,229.75	-	100.0	0.00	1,230.05	0.0	0.0	0.020

Scenario: Base Current Time Step: 0.000 h FlexTable: Catchment Table

Label	Outflow Element	Area (User Defined) (acres)	Runoff Coefficient (Rational)	Time of Concentration (min)	Catchment Intensity (in/h)	Flow (Total Out) (cfs)
AREA 1	CB-6	0.510	0.398	-	9.044	1.85
AREA 2	CB-1	0.620	0.593	-	8.941	3.31
AREA 3	CB-2	0.300	0.463	-	8.544	1.19
AREA 4	CB-5	0.030	0.560	6.000	10.454	0.18
AREA 5	CB-3	0.160	0.495	5.000	10.830	0.86
AREA 6	CB-4	0.150	0.885	-	9.308	1.25
AREA 7	CB-9	0.210	0.950	5.000	10.830	2.18
AREA 8	CB-9	0.060	0.528	5.000	10.830	0.35

Scenario: Base Current Time Step: 0.000 h FlexTable: Conduit Table

Label	Start Node	Stop Node	Invert (Start) (ft)	Invert (Stop) (ft)	Length (Scaled) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Flow (cfs)	Size (Display)	Velocity (ft/s)	Depth (Out) (ft)
CO-1	CB-1	CB-2	1,245.75	1,245.00	117.7	0.006	18.0	3.31	18 inch	4.46	0.80
CO-2	CB-2	CB-3	1,245.00	1,232.15	63.3	0.203	18.0	4.36	18 inch	16.71	0.88
CO-3	CB-3	CB-4	1,232.15	1,230.05	126.5	0.017	18.0	5.17	18 inch	7.15	0.96
CO-4	CB-9	0-2	1,230.50	1,229.25	13.2	0.095	18.0	2.18	18 inch	10.43	0.29
CO-4	CB-4	0-1	1,230.05	1,228.51	6.6	0.233	18.0	6.23	18 inch	12.56	0.55
CO-5	CB-5	CB-3	1,233.50	1,232.15	32.8	0.041	6.0	0.18	6 inch	5.08	0.88
CO-6	CB-6	CB-7	1,242.30	1,233.58	176.4	0.049	18.0	1.03	18 inch	6.63	0.48
CO-7	CB-7	CB-8	1,233.58	1,227.47	147.4	0.041	18.0	1.63	18 inch	7.15	0.49
CO-8	CB-8	0-2	1,227.47	1,226.96	41.3	0.012	24.0	1.79	24 inch	3.00	0.46
CO-9	CB-9	CB-10	1,233.25	1,229.75	96.7	0.036	6.0	0.35	6 inch	5.88	0.17
CO-10	CB-10	O-3	1,229.75	1,229.25	22.7	0.022	6.0	0.34	6 inch	4.89	0.20

Scenario: Base Current Time Step: 0.000 h FlexTable: Outfall Table

Label	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Hydraulic Grade (ft)	Flow (Total Out) (cfs)	System Flow Time (min)	System Intensity (in/h)	System CA (acres)
0-1	1,232.55	1,228.51	Free Outfall	1,229.06	6.23	11.447	8.406	0.735
0-2	1,233.80	1,229.25	Free Outfall	1,229.54	2.18	5.021	10.822	0.199
0-2	1,233.45	1,226.96	Free Outfall	1,227.42	1.77	10.766	8.662	0.203
O-3	1,234.65	1,229.25	Free Outfall	1,229.45	0.34	5.352	10.698	0.032

APPENDIX E

Inspection and Maintenance Agreement

for

Sources for Community Independent Living

Apple Blossom Lane

Little Rock, Pulaski County, Arkansas

A. GENERAL

In accordance with the requirements stated by the Little Rock Stormwater Drainage Manual, this document outlines the aspects of long-term maintenance for the developed site.

Components

The drainage system on-site will be as shown in Appendix C and D. Maintenance of these on-site BMP's will be crucial to the longevity and safety of the developed site and the existing roadway.

B. INSPECTION

Structural Inspection

The drainage system shall be professionally inspected twice a year. The thorough inspections will take place in months of June and October to ensure the culverts have been checked before and after the rainy season (November-May).

Erosion

Along with structural inspection, the drainage system shall be inspected for signs of erosion before and after the rainy season.

Clearance of Debris

During the rainy season, inlets to the drainage system will be inspected once a month for debris such as branches, leaves, trash, and sediment to ensure the culverts function as designed.

Bioretention

The bioretention structure maintenance and inspection will adhere to the recommendations of WQ-04 (Bioretention) of Appendix C of the Little Rock Stormwater Drainage Manual.

C. DOCUMENTATION

A record shall be kept for all structural inspections and major maintenance activities. The report of inspections will be turned in to the City of Little Rock annually.

D. RESPONSIBILITY

The property owner will be responsible for the maintenance services.

E. CONCLUSION

As demonstrated above by the topics covered, the Inspections and Maintenance Agreement meets the requirements of the City of Little Rock.

I, <u>Saul Kip</u>, Licensed Contractor No. <u>12345</u> in the State of Arkansas, hereby certify that the long-term maintenance and inspection items contained in this agreement have been prepared in accordance with sound engineering practice and principles, and the requirements of the City of Little Rock. Further, I hereby acknowledge that the review of the long-term maintenance and inspection plan by the City of Little Rock or its representatives cannot and does not relieve me from any professional responsibility or liability.

Black Bear Builders, Inc.

Saul Kip, G.C.

Site Developer